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o """ 'SOME NEW PROBLEMS ON SHELIS AND THIN STRUCTURES*

By V. S. Vliasov

1. Cylindrical shells of arbitrary section, reinforced by longitudinal
and transverse members (stringers and ribs) are considered by us, for &
guffliciently close spacing of the ribs, as in our previously published
papers (references 1 and 2), as thin-walled orthotropic spatial systems.
at the cross-gections of which only axial (normal and shearing) forces
can arise. The longitudinal bending and twisting moments, due to their
weak effect on the stress state of the shell, are taken equal to zero.
Along the longitudinal sectlons of the shell there may arise transverse
forces in addition to the normal and shearing forces. Under the so-
called static assumptions there is taken for the computation model of
the shell a thin-walled spatial system consisting along its length
(along a generator) of an infinite number of elementary strips capable
of bending. Fach of these strips is likened to a curved rod operating
in each of its sections not only in tension (compression) but also in
transverse bending and shear. The interaction between two adjoining
trensverse strips in the shell expresses 1itself in the transmission from
one strip to the other of only the normal and shearing stresses.

The static structure of the computation model here described is
shown in figure 1, where the connections through which the normal and
shearing stresses transmitted from one transverse strip to another are
Indicated schematically by the rods located in the middle surface of the
shell.

In addition to the static hypothesis we introduce also geometric
hypotheses. According to the latter the elongational deformations of
the shell along lines parallel to the generator of its middle surface
and the shear deformations in the middle surface, as magnitudes having
little effect on the state of the fundemental internal forces of the
shell, are taken equal to zero. The deformations of the shell in our
computational model are such that in the first place the lines of this
surface perpendicular to the generator are inextensible at each point
and in the second place the angles between the lines of principal curva-
ture (the coordinate lines) which are straight before the deformation
remain straight after the deformation.

The differential equations of equilibrium of the cylindrical shell,
by virtue of the statical hypotheses assumed, will have the following
form (figs. 2 and 3).

T

* Wekotorie Novie Zadachi Stroitelnol Mekhaniki Obolochek 1
Tonkostennikh Konstruktsii." Izvestia Akademii Nauk, 1947, No. 1,
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(1.1)

where z and 8 are the coordinates of a point of the middle surface,
z being the distance along the generator and s, along the direction at
right angles; R = R(s) 1is the radius of curvature, P,s Py, and Pp» the

components of the vector of the surface load.

The system of equations (1.1) by elimination of the forces 3, TE:
and N is reduced to a single equation

+0G =P (1.2)

T
- where o = ?§ ig the axial normasl stress (5 is the thickness of the

shell), P 1is a function depending on the components of the external
surface load and determined by the equation

dp, , g _ P

P oz Os Bsa(an) (1:3)

In equation (1.2) § denotes the differential operator of the fourth
order in the variable s. This operator, as shown in reference 5, 1s
connected with the "law of sectorial areas"” and has the form
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2 /2
Q= §—R§__>+ 5_<£ 5_.> (1.1)
ds? \ ds2 O \ R ds .

If there are no surface forces the required intermal forces of the
shell cen be expressed in terms of the single function & = &(z,s8) by
the equations

N2
S = - Qlé_ﬂ
2
oz
M
T2=R82<|’2 (1.5)
dzds
oo . X0
322
3
N=-_00
ds 822

in which Qy is the differential operator of the third order also in the
varlable s

a1 1.6
‘as(ﬂa §)+Ras (1-6)

and 1s connected wlth the operator Q by the relation

® = g_s(nlw) | (1.7)
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2
For RS—%-: @ and R>» the first three relations in equations (1.5)
s .
go over into the well-known equations of Alry Ffor the plane problem of the
theory of elasticity. The function ¢ may be called the stress function
for the cylindrical shell. This function, as in the plane problem, in the
computational model assumed by us, 1s conditioned only by the static
hypotheses and plays the part of the fundamental static undetermined

magnitude-

If the surface load is dlfferent from zero there must be added to
the right side of equations (1.5) the corresponding particular solutions
of the nonhomogeneous static equations. These particular solutions may
be obtained from equations (1l.1) on the assumption that G =0 or
Ty = 0. In the second case (for Ty = O) the particular integrals

for G, T, and N can easily be obtained on the basis of the law of
sectorial areas for the moments G (reference 3)-

2. Let u =u(z,s), v = v(z,s), and w = w(z,s) be the components of
the total displacement of some point of the middle surface of the shell
taken along the generator, the tangent to the arc of the contour line,
and the internal normal, respectively. For the components of the
deformations corresponding (in the sense of Hooke's law) to the forces
Ty Ty, S, and G we then have the formulas

(2.1)
K =a_ 14— .a_w.
(R os

liminating the displacements we obtain the single differential equation
>f continulty of the deformations:
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Ca 2 (1 ) (2 >+a_(£a_r>
ds2 as Bs R J ds Oz ds \R Oz

o .
2 [ J ¢ 2

+ 9 R—2 | + ok _ 0

ds® \ 3z dz2

(2.2)

Assuming the geometrical hypotheses of the sbsence of deformations
of transverse elongation and shear, that is, setting

7y =0
(2.3)
€, = 0
we obtain
2
Qe + a—; =0 (2.4)
oz

This is the very Important equation of continuilty of deformatlion first
given in our previous papers (references 2 and 3).

Differential equation (2.4) shows that the bending deformation of
an elementary transverse strip (deformation of the contour) is accompanied
by the elongational deformation of the shell along the generator
("deplanation” of the cross-section).

3. Considering the shell, strengthened by ribs, as a reduced
orthotropic elagstic thin-walled system we represent Hooke's law under
assumptions (2.3) in the following simplified form:

-y

Gl =
(3-1)

Ed

It

1
U‘B—‘
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where A 1s the stiffness of the shell 1n elongation along the generator
and D 1s the stiffness (with account taken of the transverse ribs) in
bending along the lines of the contour. If there are no ribs then
evidently

(3-2)

where & 1s the thickness of the shell, E 1s the modulus of elasticity.

Substituting (3.1) in equation (2.4) and combining with equation (1.2)
we obtain the system of two simultaneous differential equations (proposed
in reference 1):

2
é_ﬁﬂgl.+ QG =P
oz
(3-3)
2
Qo - éa_G= 0
D 3z°

The above equations have a symmetrical structure with respect to
the terms with derivatives with respect to 8 which, as shown in
references 1 and 2, is in full agreement with the fundamental theorems
of the theory of elasticity. For R = constant (for a circular shell)
equations (3.3) will have constent coefficients.

4. Setting in the second of equations (3.3) D = =, that is, consid-

ering according to the second of equations (3.1) the contour of the cross
section of the shell as rigid (nondeformeble: k = 0) we obtain

2 /2
LGB_U)J' é.(a 6_c> _ o (4.1)
382\ 3s° 0s \R os

For the axial normal stresses o(z,s) as a function of the contour
coordinate s there is thus obtained the "law of sectorial areas" which
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was put at the basis of our general theory of the strength, stability,
and vibrations of thin-walled rode and shells of arbitrary nonsymmetrical
open sections. This law, as shown in references 3 and 7, is a general-
ization of the plane sectlions hypothesis that lies at the basis of
present day elementary theory of the bending of beams (the Bernoulli-
Navier hypothesis). The general theory developed by us of thin-walled
rods and shells with stiff profiles includes a very wide class of
practically important problems on the strength, stabllity, and vibration
of thin-walled structures (usual as well as in the elastic medium)
applied in various fields of structural technology (structures, ship
construction, aviation, and so forth). From this theory there arise as
particular cases: the theory of the longitudinal bending of rods
according to Euler, the problem of Prandtl on the stability of the plane
bending of a narrow plate of rectangular section, the well-known problem
of Timogshenko on the stabllity of the plane bending of an I-beam, and

go forth.

We may note that on the basis of the theory of thin-walled rods
and shells certain fundamental defects are revealed in the known works
of Wagner (reference 4), Bleich (reference 5), and Pretschner on the
problems of the stabllity of thin-walled aercnautical structures (see
reference 3, page 167) and in the work of Dishinger, Ellers, Ebner,
and others on the computatlion of cylindrical and prismatic shells on
the basis of the so-called momentless theory (see reference 3, page 140).

Setting in the first of equations (3.3) o8 = O, that is, assuming
that the shell in 1ts transverse sections works only in shear, as 1s
true, for example, in the case of a crimped shell, for P = O (the
homogeneous problem) we shall have

o /.2
§_<Ré_<i) FL(22)o (4.2)
3s2 \ 22 ds \R 08 ,

The above squation agrees exactly with equation (4.1). This
equation for the transverse bending moments G = G(z,s) as a function
of the coordinate s also glves the law of sectorial areas. On the
basis of this law on introducing the four linearly independent orthogonal
functions which are particular integrals of equation (4.2) there is
cbtained for the transverse elementary strip of the shell, in addition
to the so-called elastic center in the theory of frames and which in the
theory of the thin-walled rod corresponds to the center of gravity of
the cross sectlion, a new point analogous to the center of flexure.

5. et Z = Z(z) be a function of the variable 2z satisfying the
differential equation
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Z - —Z = 0 L ' (501)
lh .

where 1 is the length of the shell in the direction of the generator,
m 1s an arbitrary parameter. The solution of the fundamental differ-
ential equations of the shell will be sought in the form

G(z,8) = G(8)Z(z)
u(z,s) = u(s)z'(z)
(5-2)
o(z,8) = o(s)2"(z)
S(z,s) = S(s)Z2"(z)

where G(s), u(s), o(s), and S(s) are required functions of s. Adding
to (5.2) and (5-13 the boundary conditions given In each particular case

of the problem at the curvilinear edges z =0 and 2z =1 of the shell,
we shall have for each particular case of the boundary problem a complete

system of orthogonal fundamental functions Zp(z) (n =1, 2, 3, + - +, ).
Each of these functions is determined by 1ts fundamental number mn(n = 1,
2, 3, « « -, o) obtained from the homogeneous boundary conditions and

the differential equation (5.1). Thus, for example, in the cage of a
shell having at the edges z =0 and 2z =1 a hinge support, the
conditions for the determination of the fundamental functions Zn(z)
will be 0 =G =0 for z =0 and z = 1. The fundamental functions
in this ‘case will be purely trigonometric

In the case of a shell both edges of which are rigidly clamped the
boundary conditlions at the supported edges will be
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For these conditions we obtain

2a(e) - (o m - con m) (s < )

- (sh m, - sin mn)(cosg%i-- chf%gi) (n=1,2,3, « -« )

where

m; = 4.73
m; = 7.853
m, = EE;é_i.ﬁ (n >2)

If one of the transverse edges 2z = 0 of the shell is hinge
supported and the other 2z =1 1is rigidly clamped, the boundary condi-
tions will be

-

Q
I
Q
1]

o

For these conditions the fundamental functions assume the form:

z z :
- Zp(z) = -8in my she%— - cos my CHE%— (n=12,3 ..., ?)
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where

m = 3.927-
my = 7.068
mn=“n;1n (n> 2)

In a simllar manner the fundamental functions Zn(z) are constructed
also for other cases of boundary condltions referring to the transverse
edges of the shell (one edge of the shell is hinge supported or clamped
and t?e other free of any fixation, both edges of the shell free, and so
forth).

The method of constructing the fundamental functions Z,(z) for
the shells and the tables of these functions for various cases of the
boundary conditions are given in our paper (reference 2). We may note
that the fundamental functions 2Zp(z) determined by the method
described above are quite the same as the functions of Rayleigh in the
theory of the transverse vibrations of a homogeneous heavy beam. The
deflection of the axls of the beam jy, the deviation ¢, the bending
moment M, and the transverse force Q In our problem, as 1is seen
from (5.23, correspond to the transverse bending moment G, the longi-
tudinal displacement u, the normal stress o, and the shearing
force S. The function Zp(z) 1n this case 1s identical with the

form yn(z) of the displacement (with deflections of the axis of the
beam) corresponding to the nth frequency of its natural vibrations.

The fundamental functions Zn(z) determined by the method described

above and satisfying in each particular case initially given boundary
conditions for the transverse edges of the shell and the second deriva-
tives of these functions possess the property of orthogonality:

1
f Zi(t)Zy(t)dt = O
0

(5-3)

Z"(t)Z"(t)dt = 0 with 1 £k
9
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We now set in equations (3.3)

00

0(2,8) =) oy(s)2,"(2)
1

(5-4)

G(z,s) =:z:Gn(s)Zn(z)
T

Multiplying the first of equations (3.3) by Zn(z)
by Zp"(z) (n 1s a flxed number of the infinite series m =1, 2,

3, ., »), then taking the integrals over the entire length of the
shell, and remembering (5.3), we shall have for the initial coefficients
cn(s) and G,(s) a system of two ordinary differential equations:

and the second

XnFon(E) + QnGn(s) = p,(8)

(5-5)
A
Qop(s) - ﬁ'Gh(s) =0
where

L

L omy

Xn = —

zh
(5.6)

1
Py (s) =Jr P(z,8)Zn(z)dz
0 .
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From the second equation for a given function P(z,s) depending on
the external load and determined by equation (1.3) for the normalized
functions Zn(z) there is determined the Fourier coefficient of the nth

term of the series

p(z,8) =) pp(s)Zy(2) (5:7)
1

From the system of ordinary differential equations (5.5) for
fixed n (for each term of the series (5.4)) the required functions
a,(s) and G,(s) are determined with an accuracy up to eight arbitrary

constants. These constants in each term of the series are found from

the boundary conditions referring to the longitudinal edges of the shell.
The number of these condltlons at each point of the longitudinal edge in
the computation model proposed by us is equal to four. These condltions
can be given in forces or in displacements or, in the case of the mixed
problem, partly in forces and partly in displacements. In this manner
there is solved completely the problem of the equilibrium of a cylindrical
ghell of arbitrary contour for arbitrary given boundary conditions and
load. For R = constant (case of the circular shell) equations (5.5),

as follows from the expression (1.6) for the differential operator Ql,

will have constant coefficients.

6. The general theory of prismatic shells consisting of a finite
number of sufficiently narrow straight rectangular plates and having at
the cross section arbitrarily given contours was constructed, as was
shown in reference 2, on the basis of the idea of reducing the funda-
nmental differential equatlons (3.3) in partial derivatives to a system
of ordinary differential equations in the variable 2z having in the
general case an eight-term structure. These equatlons for the required
functions oy(z) and G(z) representing, respectively, the longitudinal

normal stresses and the transverse bending moments referring to the kth
rib of the prismatic shell (fig. 4) have the following form

k=i+1 k=1+2
Zij a;10 "(z) + :Z: b G k(z) + pi(z) =0
k=1 k=1-2
(6.1)
k=1i+2 k=i+1

Z bikcrk(Z) - Z cika"(Z) =0

k:i —2 k=i -l
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The coefficients of these equations in the general case of thin-walled
orthotropic prismatic structures (structures consisting of plates s
stringers, and transverse reinforcing ribs sufficlently closely spaced
~along the length of the shell) are determined by the following equations

‘\
a = & =1y
k-1,k = %k, k-1 = = Pk
> (6-2)
L .
gk = 3(Fk + Fie1) + Ay
-~
i
d
°k-1,k T °k,k-1 < ¢ T,
f (6.3)
4 @&
ck Xk = L _k- + .ﬁ
? 3\Tx Tk
~s
~~
b2 x = P x2 = -
- T Qg sin @y
b =D = - L (cot
k-1,k = Pk,k-1 7 7 73 Pr-1
- K
a a
+ cot @y + kK + k F (6.4)
dg-1 91n @) diy 8In P
bk x = -l—(cot Py.y + cot q)k) + 2
T g2 dxdier1 81D Py

1
+ d2 (cot P + cot ¢k+l)
k+1 :
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In equations (6.2) Fy 1s the area of cross section of the
kth plate between ribs k -1 and k (fig. 4), and AF,.  1s the area of

the cross section of the stringer placed along the kth rid and working
in tension (compression) together with the plates of the shell. In
equations (6.3) dj 1s the width of the kth plate (the length of the

gide of the polygon of the cross-section located between the vertices
k -1 and k), and Iy 1is the amount of inertia per unit length of the

longitudinal section of the kth plate determined in the case of the
shell by the reinforcing transverse ribs with account taken of the mean
moment of inertia of these ribs. In equations (6.4) o 1s the angle

between the platee k and k + 1 intersecting at the kth rib. In
figure 4 the angles @ _;, @, and @, are positive, and the angles

2 and Pph-1 must be considered negative.

The system of differential equations (6.1) consists of the static
equations represented by the first group and corresponding to the first
of equations (3.3) and the geometric equations represented by the second
group and corresponding in their physical sense to the second of
equations (3.3). The number of static equations (6.1) will be equal to
the number of points O, 1, 2, . . ., n of the cross sectlon for which
are determined the axial normal stresses ck(z) (k =0, 1, . . ., n).

The number of geometric equations (6.1) is determined by the number of
required transverse bending moments referring to the ribs of the shell.
For a shell wlth free longitudinal edges consisting of n plates the
number of requlred functions ck(z) and therefore also the number of

corresponding static equations will be equal to n + 1. The number of
required moments Gk(z), however, and therefore also the number of

corresponding geometric equations will be equal to n - 3 (the

moments Go(z), Gy(z), G, _;(z), and G (z) in our computational model

are found from the static conditions). In this case the index i in
the equations of the first group (6.1) assumes n + 1 values and in
the equations of the second group n - 3 values. Altogether we shall
have a system of 2(n - 1) ordinary differential equations relative to
the 2(n - 1) required functions, (n + 1 functions o, (z), and

n - 3 functions Gk(z)).
For the shell of closed section (fig. 5) consisting of n faces,
the system (6.1) will consist of 2n equations of which n equations

are static and n geometric. If the shell has a cylindrical hinge at
any Jth rib then in equations (6.1) there must be set GJ(Z) =0 and

the corresponding Jth equation of the second group rejected.

The free term pi(z) of any 1th equation of the first (static)
group (6.1) is determined by the equation
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R =

!
T wal®) - g ul@) | (6.5)

where q; and gq;,7 &are the transverse contour unit loads acting in the

planes of the faces 1 and 1 + 1, respectively, and directed along the
increasing order number of the rlb. Any external locad conslsting of
unit forces given as functions of 2z and applied to the ribs of the
shell can be reduced to these loads by means of expansion into seriles.
Setting in equations (6.1)

0

ok(z) = Zuk,nzn "(z)
1

G(z) =5 Gy nn(z) . (6.6)
1

pi(Z) =§E:;i,nzn(2)
1

where Z,(z) (m =1, 2, 3, + . ., ») are fundamental functions satisfying

equation (5.1) and the boundary conditions given on the transverse
edges z =0, z = 1, Ok,n and Gk n 8are the required coefficients and

Py a the Fourler coefficients determined for the given functions Z, (z)
by the formuls

p1(z)Zy(z)az

Pi = (6’7)

702 (z)dz
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we obtain for the coefficients Ok .n and Gk n of the nth term of series
# >

(6.5) a system of eight-term algebraic equations:

k=+1 k=142

N .
A L 81k%k,n *+ E bixbie,n + P1n =0
k:i-l k=i-2
(6.8)
k=1+2 k=1+1
Z Pix%% n - Z ¢1xGk,n = 0
k=1-2 k=1-1

The general theory of prismatic shells here presented, first given by
us in the papers, references 1, 2, and 3, permitted constructing methods
of solutlon of a number of complicated new boundary problems on the
strength, stability, and vibrations of thin-walled spatial orthotropic
systems for any boundary conditions given on the transverse or
longitudinal edges of the shells. On the basis of this theory the
cylindrical shell of arbitrary contour 1s considered as a prismatic
shell consisting of a finite number of inscribed sides. For the
computational model of the shell there 1s thus assumed & spatial elastic
system possessing along the contour line 2z = constant (in the trans-
verse section) a finite number of degrees of freedom with respect to
stresses and deformations, and along the line s = constant (in the
direction of the generators) an infinitely large number of degrees of
freedom. Such systems are termed by us 'discretely-continuous." With
increase 1n the number of sides of the prismatic shell inscribed in
(or described about) the cylindrical shell the number of equations (6.1),
both geometric and static, increases. In the limit the infinite system
of ordinary differential equations (6.1) goes over into the system of
the two partial differential equations (3.3).

If in equations (6.1) all the coefficients cij are set equal to

zero which, as is seen from (6.3), corresponds to the reinforcement of
the shell by very rigid transverse ribs, then, as shown in reference 3,
we shall have the law of sectorial areas for the thin-walled prismatic
rods and shells possessing rigid contours.

In the same manner, setting in the equations of the first group (6.1)
all the coefficients ajx equal to zero, that is, assuming that in the

transverse sectlions the shell works only in shear (for example, the shell
congisting of only one crimped sheet), then for p; = O we shall have the

law of sectorial areas also for the transverse bending moments. The coef-
ficients b3x determined by equations (6.h) have a very close connection
with the law of sectorial areas both for the longitudinal normal

stresses o0)(z) as well as the transverse bending moments Gy(z).
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7. If the new stress function v = ¥(z,8) is introduced by the
formulas

Q
i
Sk
ry
o
<

Q
N
N

(7-1)
G = ay

the second of equations (3.3) is identically satisfied and the first
assumes the form

L
ol + 20V _p (7-2)
sz
where
2 _A .
cc = 5 (7-3)

For a shell of constant thickness & 1in the absence of additional
transverse ribs

= (7-4)

In the case of the homogeneous problem P = O, equation (7.2)
breaks up into two conJugate complex equations

2
W+Cia_w=o

dz2

' (7-5)
b 1ﬂ—o

where 1 1s the imaginary unit (i = V- l>.
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Starting with the law of sectorial areas, that is, Iintroducing into
consideration the function o = w(s) satisfying the differential
equation

3% [Fw),d /1 aw)
aw = S(REL), (L) _, .
852<852>+ as<R 3 (7-6)

we may represent (7.5) in the form of the equivalent integrodifferential
equatlions:

2
J w(z,z) at
oz

¥(s,z) = - ci w(t,s)

(7-7)

2.
¥e,z) =ci m(t,s)é—giziil dt
322

The kernel of these equations is the function w(t,s) satisfying
equation (7.6) and representing twice the area of the segment bounded

—~

by the arc s - t and the Joining chord s - t. The magnitudes s
and t are the coordinates of the points on the contour line (fig. 6).
The function w(t,s) will be termed the sectorial kernel.

Analogously to (7.7) equations (3.3) can be reduced to equivalent
integrodifferential equations with sectorlial kernel w(t,s). The
general solution of the problem (3.3) can be represented in the
followlng form:
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- G(z,8) = Gb(z) + Yo(z)x(s) - xo(z)y(s) - SO'(z)w(s)

8 8

Bec(t,z)

+ o(t,s) at + wo(t,s)p(t,z)dt

o} oz Jo
(7-8)

0(z,8) = E[u; () - & "(2)x(s) - m "(2)7(s) - 0, "(2)exe)]

3% (

+ A m(t,s)_L_t 2) dt
D 2
0 oz

In these equatlions the following notation is assumed: x(s) and y(s)
are the cartesian coordinates of a point on the contour line, determined
by the arc s; w(s) 1s the sectorial area for the point with
coordinate 8 with the pole and origin of computation of this area at
the point s = O; this area i1s thus equal to twice the area of the
segment included between the arc s and the Joining chord (fig. 7);

™~
w(t,s) 1s twice the area between the arc 8 - t and the chord s - t;
uy(z), Eo(z), ny(z), and 6,(z) are, respectively, the longltudinal
displacement, the displacements in the directions of the axes O0x and Oy,

and the angle of twist (rotation of the tangent to the contour line) for
the longitudinal edge s = O at the point determined by the
coordinate zj uy'(z), £5"(2z), np"(z), and 64"(z) are the first and

second derivatives of these variables; Gp(z), Xy(z), and Y,(z) are

respectively, the bending moment and the forces parallel to the
axes Ox and Oy and applied at the longltudinal edge s = 0; So(z) is

the shearing force applied at the edge s =0, and Spy'(z) 1is the
derivatlive of this force.

)

Of the eight magnitudes uy(z), &g(z), ﬂo(z), 80(z), Go(z), Xy(2),
Yo(z), and So(z) (four geometric and four static) four are usually
gilven. For a free edge, for example, Gog = X5 = Y5 = Sg = 0. For an
edge rigldly clamped uy = 5 = g = 69 = 0. The remaining four magni-

tudes are obtalned from the conditions given for the other edge s = 8y

Adding these condltions we shall have integrodifferentlal equations of
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Fredholm with symmetric sectorial kermel. Making use of the series (5.4)
and (5.7) we obtain for each nth term of these series a system of two
symmetrically constructed Integral equations 1n the unknown functions.

The method of solution here described of the problem of shells with
the ald of the sectorial kermel w(t,s) 1s applicable to shells having
any arbitrary cross-sectional contour (for a section consisting of
smooth and broken lines). Investigations show that the method of iter-
ation for the sectorial nuclel of equations (7.8) always converges.

8. The theory of shells presented above is constructed on the basis
of geometric hypotheses (2.3). If these hypotheses are not agsumed,
that is, if together with the deformations e¢; and k there are also

taken into account the deformations ¢, &and 7, and if u, v, and w

are eliminated from equations (2.1), we obtain as was shown previously
the more general equation of continulty of deformations

2
2 [ d%¢ de 2 2
P [ 1+a<£ -l>_8<R87>+B<J_.87>
ds2 \ dg2 d8 \R 08 ds2 \ ds dz ds \R oz

(8.1)
2
+ 82 (;B 2 + P =0
2 2 2
as\az oz
This equation on the basis of Hooke's law:
T
¢ -1
A
T
= 2
62 B
(8.2)
=S
7=¢C
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wvhere A, B, C, and D are the coefficients of elasticity of the ortho-
tropic shell, is reduced to the following '

' P 2
A C "3z B 732 D 322 .
Substituting (1.5) we obtain
lnm+}-nna—23 ¥99&+l&9-o (8.4)
A C MG B WRIS Y T '

where Q, Q;, (b, 93, and Q) are the contour differential operators

(in the variable s) connected with the law of sectorial areas and
determined by the formmlas

2 2
o - g_@a_>+ §_<£ a_>
de° \ 9® ds \R Os
Ql = §_<%§3_>+-l.§_
ds \ 982 R Os

- rE (8.5)

2
o = 3_<R§_.)+ é.(l)
3 2\ as 3s \R

2
d
Q, = ——(R)
4 32

These operators for R = constant will have constant coefficients.
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Eqﬁation (8.4) to which we also apply the method of separation of
variables i1s the fundamental solving equation for the cylindrical
2
orthotropic shell of arbitrary contour. For Ré—g =@ and R->~ this
_ Os
equation goes over into the well-¥kmown equation of the fourth order for
the plane problem of the theory of elasticity.

The potential energy of the shell is also represented with the aild
of the stress function ¢ = ¢(z,s):

1 Lo 1l Y L 1/ 0% | 1/
V = 5 K(m) + E(Ql-a-z—) + ﬁéga—zﬁ) + 5(52_2> dz ds (8.6)

Tt is easy to show that equation (8.4), therefore (8.2) and
also equation (8-1), is the varlational equatlon of Euler-Lagrange for
the potential energy V determined by (8.6). Conversely, the principle
of Castigliano, therefore also the theorem of mutual work, is a
consequence of the geometric equation (8.1), the static equations (1.5),
and Hooke's law (8.2). We may remark that the equations of continuity
of deformations in the theory of shells were first derived by us in
references 1 and 2.

For B =C = » equation (8.6) gives the potential energy for
shells working under the geometric hypotheses previously assumed.

The general technical theory of prismatic shells having in their
cross sections one or several closed contours (shells of the type of the
wing of an airplane) was given in reference 4. This theory is likewise
based on the idea of the reduction of the shell to a discretely-
continuous elastic system and the mathematical part is described by a
system of symmetrically constructed ordinary differential equations
obtained essentially from equations (8.4) by reducing this equation,
on the basis of the principle of Lagrange, with the aid of additional
physical assumptions, to ordinary differential equations analogous to
equations (6.1).

The method was extended by the author also to conical shells both
simple end compound with multiply connected sections. The position of
a point on the middle surface of the given conical shell can be
determined by two magnitudes: the coordinate 2z giving the distance
from the vertex of the cone to the plane of the cross sectlon of the
shell passing through the given point, and the coordinate s for which
may be chosen the length of the arc on the contour line of any cross
section z = ¢ (for example, the base, fig. 8). For such choice of the
coordinates in all the above given differential equations only the terms
with the derivatives of the required functions with respect to the
variable 2z must be changed. The fundamental equations (3.3) for the
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‘conical shell of an arbitrary section for relatively small angle (for a
shell differing little from a cylindrical one) assume the form

o Jn
o/
N3
[SITe)
aqo/
N
PN
0 N
&
S’
]
+
o)
[}
I
Hd

(8.7)

I
o

0g - Az 2@.(5@)
Dcdz|z dz\o

where the operator § is determined by equation (1.6) in which R = R(s)
refers to the contour line z =c¢ (fig. 8). Similarly the fundemental
eight-term equations (6.1) for the conical shells consisting of
gufficiently long trapezoidal faces and having at the cross sections an
arbitrarily given shape (fig. 9) are generalized into the following:

k=i+1 k-i+2

k_ ' &1k -[: (-— > ] gz 1_2 bixGx + p1 =0

(8.8)
k=i+% k=i+l

> vaee - > ewk[3(2e)] -0
k=1-2 k=1-1

where the primes denote the derivatives with respect to z. The coef-
ficlents 8y g bik’ and c3) are determined by the general equations

(6.2), (6.3), and (6.4). All the geometric megnitudes entering in these
equations refer to any initially chosen shape of cross gsection of the
shell.

Equations (8.7) are also integrated by the method of separation of
the variables. The fundamental functions Z,(z) (n =1, 2, 3, . . . «)

determined for the cylindrical shell by equation (5.1) and the boundary
conditions are generalized for the case of the conical shell into the
Bessel functions. For these functions equations (8.7) for each term of
the series go over into ordinary differential equations (in the
variable s) and equations (8.8) into a system of eight-term algebraic
equations. In a similar mammer there is generalized for the conical
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shell the theory of prismatic shells of multiply connected cross
sections as given in reference i.

9. The general problem of the strength, stability, and vibrations
of thin-walled structures having the form of a sufficlently curving
shell described by an arbitrarily given surface is, in our paper,
reference 5, likewise reduced to a system of two simultaneous symmetrical
differential equations with respect to two potential functions. This
system, for shells of arbitrary cross-section shape (cylindrical,
spherical, elliptical, parabolic, and so forth), has the following form:

1
& Ve VetP - (Hve2 - LVh2>w =0

(9-1)

: 3
(20,2 - 19,2)p + ______12(?5 5 Ve2V.2 - p =0
- v

where @ = @(a,p) and w = w(a,B) are the required functions (a,B are
the coordinates of the point of the surface in the lines of principal

curvature (fig. 10)), Vez and Vha are the differential operators of

the elliptical and hyperbolic type, respectively, for the glven surface:

-5 52D

<
o
I

(9-2)

2
Vi

AB[ % ABB@>-A2% Aél;g—fi-ﬂ

H and L are half the sum and half the difference of the principal
curvatures:

H = 5 + )

(9-3)

L= 30 - k)
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The mixed auxiliary operator Hsgz - LVLe is determined by the formula:

2 - 192 - %[g;(% ko %)+ %(%n %B‘)] (9:4)

In addition to the fundamental equations (9.1l) there are given in
reference 5 the equations

-
~18 (1o, 1 BX
1 BBB(Baﬂ)+A'258aaa.
13 /13 1 dA dp
Th = o o — 20 — —— — .
T Aaa,)+A132 8 B o (99)
S=-L<a_"‘¢;-aaia;v-aa_A§>
AB\3% B Bk P AR X B
_ .12 (1dw\. 1 M
1 A&(AM) AB2 OB OB
- ;a_z>-_1_§:;a_w } (9-6)
2 BBB(BBB 428 da
T=-L(_ﬁ-£§25.i-l§ﬁ§_w.
B\ B BB A

Equations (9.5) representing a generalization of the well-known
equations of Airy determine the axial (normal and shear) forces of the
shell. These forces are expressed only in terms of the stress function.
Equations (9.6) analogous in their structure to equations (9.5) refer to
the deformations of bending ky and ko and of torslon T of the shell.

The corresponding bending and twisting moments are computed by the well-
known equations of the theory of the bending of plates:
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3

ES

Gl = e ee— Ko VK
12(1 - vz)( . 2>

' 3

Gp = - —20_ (ko + Vk (9-7)

2 2 1
12(1 - v2)( )

B3
12(1 + v)

Corresponding to (9.1), (9.5), (9-6), and (9.7) the potential energy
for each shell may be expressed In terms of the two fundamental required
functions ¢ = ¢(a,B) and w = w(a,B).

The magnitudes A = A(a,B) and B = B(a,B) in equations (9.2),
(9:%), (9.5), and (9.6) are the coefficients of the first quadratic
form of the surface in orthogonal coordinates

ds® = A%da° + B2ap° (9.8)

Equations (9.1) have the same physical sense as equations (3.3) and corre-
spond to our mixed method. The first of equations (9.1) is obtained from
the conditions of simultaneous deformations and the second from the
conditions of equilibriumj p = p(a,B) 1is the surface load directed along
the normal.

In the case of very strongly curving shells or slightly curved plates,

the parameters A and B may be considered as constant magnitudes.
Setting them equal to one we shall have

2_ ¥ &

Ve T2 e
(9-9)
2 2
vﬁz -9 9o
32  ope

For shells with zero Gaussian curvature this does not hold.
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The intermal forces and moments are determined in terms of the
potential functions @ and w by the equations

r 30
17 52
2 2
6, = 5> <aw+va»2;>
12'(1 - v2) X B
_ o
(9.10)
3 2 2
G'2= XS 2<a;+vag>
12(1 -V ) B o
2
s- .99
oa, op
F . . _ B8 3%
12(1 + v) da B

where, as In equations (9.1), @ = ¢(a,B) 1is the stress function analogous
in the plane problem of the theory of elasticlty to the functions of
Airy, w = w(a,B) 1s the normal deflection of the shell (positive if
directed along the outer normal), T7, T2, and S are the normal and

bending shearing forces (fig. 11), and Gj, Gp, and H are the bending
and twisting moments (fig. 12).

The equations of the local stability of shells are given in
reference 5 where are also given all the -fundamental equations for the
more general casge of curving shells for parameters A and B deter-
mined as certain given functions of o« and B.

It may be remarked that for kl =k, = 0, that is, in the case of

2
the flat plate the system of equations (9.1) breaks down into the
equation of Maxwell-Airy for the plane problem and the equation of
Sophie Germain-Lagrange for the bending of a plate. ZEquations (9.1) are
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thus the general fundamental equations of curving shells and represent
natural generalizations of the existing fundamental two-dimensional
problems of the theory of elasticlty referring also to the flat plate.

10. Setting in equations (9.1) X; =0, kp = %.= constant, A = B = R,

taking for a,B the nondimensional coordinates (the relative distances
expressed In fractions of the radius R and laid off a distance aR
along the generator and PR along the arc of the transverse circle), we
obtain the fundamental equations for the circular cylindrical shell:

2
1. 22 o w
— vV -REX =0
S
(10.1)
2 3
rOP ., _ E® vvow - R = 0
32  12(1 - v2)
where
2 2
2 9 o)
v 32t 32 (

Equations (10.1), on introducing the new function ¢ = &(a,B) by
the formulas

o - R2 20
aa?
(10.3)
2 2
w o= EL-V'V (0]
ES
are easlily reduced to one equation of the eighth order:
)
22222
cvvvv<b+§-%-Ra_p=O (10.4)

o
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where c2 1is a nondimensional magnitude determined by the equation

: 2
02 = &) (10.5)

12(1 - v2)82

For the required internal forces, according to (9.5), (9.7), and
(10.3) we obtain the general equations

_ %
aaeaaz

2 2
Gl = R02<§—- + ‘Va—>v2v2¢

X dp°
o .
, =22
Bau
2 2
Go = Re? 5—2 + v-a-z Vo0
oB da
(10.6)
o _ . %
| da33p
H = - Reo(1 - v)amaa T
Ny = - )
da

=
N
|
1
o
<l\)
<
<
Iy
e
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The positlve directions of the forces and moments are shown in
figures 13 and 14. The equations for the generalized, in the sense of
Kirchhoff, transverse forces assume the form

3 3
Nl*=Nl+l%2._?=-c2 %+(2—V)a—2 V?VQQ
3 o, OB

(10.7)

o)

3 3
No* = No + 29H & 262137 4 (2 - y)9 |32
¥ =Mp + 22 = o) T= V)ao@ae VA

For the components of the vector of total displacement of any point of
the middle surface of the shell we shall also have the equations

_R(o__ e
ES &532 3a3

w =
v=-X §_3_‘1’+(2+v)i3¢_ (10.8)
B [ 3p3 daPp

_R 22
YT VVe

where u 1s the longitudinal displacement (positive in the direction of
increasing coordinate a), Vv is the displacement along the tangent to
the arc of the circle of the cross section (positive in the direction of
increase of the central angle B), and w is the normal displacement
(positive in the direction of the outer normal).

In each particular case of the boundary problem the boundary
conditions must be added to the fundamental equation (10.4). Corresponding
to the physical sense of the problems here considered the number of
independent conditions at each point of the edge of the shell (both the
longitudinal B = constant and the transverse a = constant) must be
equal to four and these conditions, depending on the character of the
problem, may be elther purely statical (in the forces), purely
geometrical (in the displacements), or of a mixed type (part of the
conditions are given in forces and part in displacements).
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Since all the required forces and displacements are expressed in
terms. of one required function, the boundary conditions can likewlse be
expressed in terms of the function & = o(a,B)-

s an'eiample we conslder a shell, the transverse edges of which

-0 and a = % (vhere 1 1s the length of the shell in the direction
of the generator) are hinge-commected to transverse diaphragms which are

rigid in their planes. The boundary conditions in this case will be of
the mixed type:

for a =0

T1=V=O
Gl =w =0
) (10.9)
for a = g
'I‘l-_-v=0

The first two of these conditions in the problem of the two-dimensional
gtress of a rectangular plate correspond to the conditions of the free-
dom of motion in the axial direction of the vertical edges of a plate
congidered by the method of Ribiere. The second two conditions in the
probiem of the bending of a rectangular plate correspond to the
conditions of the hinge commectlon of a plate at its two parallel edges.
These conditions are considered in the method of M, Levy. It is

easy to show that the boundary'conditions_(10.9) expressed in terms of

the function © will have the form for a =0 and o = ﬁ:

2 i 6
8 =20 _-9%_232% _, (10.10)
x®  at  uf

These conditions are satisfied by representing the required function in
the form of a trigonometric series
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® = i\vﬁ(s) sin AMpa (10.11)
1

where V,(B) are the required functlons of the single variable B;
Ap 1is a nondimensional magnitude determined by the equation

Ay = 2R (10.12)

n is any positive number. Substituting (10.11) in equation (10.4),

setting p = 0, we obtain for 1V,(B) an ordinary differential equation

of the eighth order with the parameter Ay = D%R:

2 L
2( d 2 4
c <EB_2'xn> + Ay [¥n =0 (10.13)
The general integral of this equation is
Wn = Chl.‘l"]n + Canllfgn + C3n¢3n + C)-I-Il\h-l-n + E]Il-{p'_l'[l + —é—zn—ian

(10.14)

* E311_‘1?3n + E’-Lnﬁt:n

vwhere Cy,, Cop, + - -, E3n’ Cy, &are arbitrary constants, ¥y, Vons VY3,
Vins Vi, Von, Van, Vi are particular integrals determined by the

equations
¥y, = ch pB sin q.B, V1, = ch pyp sin q.p
VYo, = ch pB cos g.B, W’c“n = ch E’nﬁ cos EnB
_ _ _ (10.15)
V3n = sh pyB cos qpp, ‘lf3n = sh p B cos q.p

n

‘hm = sh p,B sin g8, -‘F)_,_n sh _I;nB gin EnB
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in which Pp, apn, Pp, 4 are magnitudes connected with the roots of the

characteristic equation corresponding to (10.13) and determined for fixed
~value of the number n by the formulas:

= Va;n\/)‘n+u+\/)‘n2+2u).n+2u2

o
)
i

%0 VBB e F ey v a2

(10.16)
I = 22“\/- (n + 1) +\22 + 20y + 22
T, - J (n - 1) + Vg2 - 2y + 22
where
_ ok
o=
(10.17)
. 12(1 - V)RR

Corresponding to the representation of the required function in the
form of the series (10.11) the genersl integrals for the stresses and
displacements of the shell can be written in the following form
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The derivatives of various orders entering equations (10.18) and (10.14)
of the functions

Vi Voo ¥ao Vim

are computed on the basis of the recurrent formulas

asy
= in 2 2
ap - Pn¥iun * WnVons ag2 (Pn "9y )*1n + Ernqn.v3'n

2
Aoy v
‘EE- = Pp¥3n = 4¥in ngn = (Pn2 - qn2)¢2n - 2Pndn¥hn

(10.19)

2
dv a~y
av a®y

2

_E:_;E = Pa¥ip + qn’lf3n, dﬁgn = (Pn - dn )ﬂrun + 2paVon

where p,, q, for any n are computed by formulas (10.16). Replacing
in formlas (10.19) ¥ by V¥ (k =1, 2, 3, 4) the magnitudes p,,
a4y, bY P,, 4, determined for any n by the corresponding formulas
(10.16), we obtain recurrent formulas for the derivatives of the second
group of the functions Vq., Vo, Eén’ and V) -

The magnitudes Tlnp: Tenp, - ey, “hp in formulas (10.18) denote

the Fourier coefficients depending in the general case on only one
coordinate B and obtained as a result of representing in the form of
trigonometric serles the particular Integrals of the fundamental non-
homogeneous differentlal equations referring to the given external load.
The arbitrary constants Cin, Con, .- - -, C4n the number of which in
each term of the series (10.18) is equal to eight, are determined from
the boundary conditions given for the straight edges of the shell (by
four conditions for each edge). Thus, for example, in the case of the
free (nonclamped) edges of the shell the boundary conditions assume the
following form (fig. 13):
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for B = iﬁl

Tp =8 =Gy =Ny =0

If the longitudinal edges of the shell are rigldly clamped, the
constants of integration for each term of the series (10.18) are
determined by the conditiona:

for B = IPp;3

M _ g
B

M=V =w =

In the case of shells which are hinge-connected at the longltudinal
edges so that these edges at each point have no vertical and horizontal
displacements and have free motion in the longltudinal direction the
boundary conditions assume the form

for B = tBl

In all these cases for a load symmetrical with respect to the
vertical plane the number of arbiltrary constants to be determined is
reduced to four. These will be the constants Cpn, Chn, Copn, and Cyup
determined for each term of the series by simultaneous solution of the
linear algebraic nonhomogeneous equations. The remaining constants Cjp,

C3n:.61n: C3y become zero.

The general solution (10.18) thus permits computing the circular
cylindrical shell for any boundary conditions given on the straight
edges and for any extermal load Including a concentrated force applied
at any point.

We may remark that equation (10.13) is readily integrated also in
double trigonometric series (see reference 2). In this case we obtain
8 solution analogous to the method of Navier in the theory of the
bending of plates.

It is not difficult to show that the genmeral solution (10.18) for
R = = breaks down into two independent solutions. One of these
golutions will evidently refer to the problem of the two-dimenslonal
stress state of a plate (method of Riblere) and the second to the
problem of the bending of a plate (method of M. Levy).

Equations (10.1) obtalned as particular cases of the general
equations (9.1) have been applied by A. I. Lurie in the solution of the
problem of the concentration of stresses of a shell near the circular

opening.
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11. The general problem of the local stablility and vibration of
curving shells, as first shown by the author in reference 5, likewlse
leads to the integration of a system of two homogeneous differential
equations ' : .

ﬁ%’V%aV%2¢ (HVEQ - vn )V =0
(2%.° - "o ED Ve¥o

(11.1)

+ é— (SO §E>-+ é— CSO éﬂ{) +
doa OB op da

where Tlo, T20’ SO are given (with an accuracy up to the parameter of

the external load) intermal axial forces of the shell determined by the
momentless theory. For strongly curving shells and slightly curved
plates equations (1l.1) for A =B =1 assume the form

1 22 [ AT v
_ - ] —— 4.4 —_— ky == =0
mY l;Bm(kEBG,>+BB<lBB>]

o op o ow + _IELVEVQ (11..2)
aa(kz aa>+ (1 > )

2 2 2 2
) <T 0 w o0 ow + 7.0 a'w) 78 O°w
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where kj = éa and ko = %; are the principal curvatures of the middle
1

surface, 7y 1s the density of the shell, ® the thickness, and g the
acceleration of gravity,

2 2
2
‘V =-a-—2-+-a—' (11.3)
X?  dp2
In the case of the spherical shell k; = kp = %-= constant equations
(11.1) will have the form
1 22 1. 2
- -= =0
5 vve R Vv
2 3 22 0 3= 0
Lgp+ —20 VYW - [T 5_Z+gs oW (11.4%)
R 12(1 - v2) 3 da 3

2 2
. T2o W L) w

=0
p2 g dt2

For a circular cylindrical shell for

we obtain
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2

1 22 Raw_

ﬁg“V v e <5 -0

o ; . T

D9, B v -’ |10 9 (11.5)
a2  12(1 -42) da?

2 2 2
+ o0 W +T205_w s OV _

o OB 2| g ot

Neglecting in the above equations (11.1), (11.2), (11.k), and (11.5)
the term with inertia forces, we obtain the fundamental equations of the
local stability of the shells. In particular, on the basis of equations
(11.4) and (11.5) we shall have the well-known solutions of a number of
problems on the stability of spherical and cylindrical shells.
setting T10 = To® = 8° = 0 and keeping the terms with the inertia
forces we obtain the equations of the vibration of shells (cylindrical
(11.5), spherical (11.4), and of arbitrary shape (11.2)). For the
cylindrical shell for

® = A s8in A cos puB sin wt
(11.6)
w =B gin Aa cos pB sin wt
-
\ = IR
1
; (11.7)
p,:I;;_ (n,m=l,2,3,---,oo)
1

where R 1s the radius of the arc of the circle, 28, is the central

angle, and 1 the length of the shell (fig. 14), we shall have on the
basis of (11.5)
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. 2 2 b
Wy n2 - g o (xe + |J.2) + _x__E (11.8)
’ yR2 | 12(1 - v2)R2 | (22 + 42)

. From equation (11.8) are determined all the frequencies of the
natural vibrations of an elastic cylindrical shell hinge-supported at
all edges. For m =mn =1 we obtain the equation for the frequency of
the fundamental tone of the vlbration:

r

2 2 2 n ‘
“’112 _ Eg 4 s <§) +<__£_> . R > (11.9)

’ 7R2 | 12(1 - v2)R2 28 [
) (281 ]

In a similar manner on the basis of more general equations is
solved the problem of the vibrations of a loaded shell (a shell subjected
to given stresses).

~

CONCLUSIONS

The technical theory of shells here presented makes possible the
solution of a number of very complicated problems on the computation of
thin-walled structures. Among these problems are the following:

1. The strength of thin-walled rods of arbitrary (nonsymmetrical)
sectlons, plain or in an elastic medium. The spatial stability of the
rods under the action of a longitudinal force applied at any point of
the cross section.

2. The general theory of the lateral stability of thin-walled
beams of arbltrary given section.

3. The general theory of the spatlal flexural-torsional vibrations
of thin-walled beams and.similar structures (for example, girder or
suspension bridges).

k. The stability of thin-walled rods having deformed contours.
Central compression. ZEccentric compression or tenslon. Pure bending.
Spatial forms of the losas of stability due to the deformed contour of
the rod considered as & shell in the transverse section. The inter-
action of the general and local stability of the rod.
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5. Practical methods of computation of cylindrical and prismatic
ghells of various ghape of cross section for arbitrarily given boundary
conditions and arbiltrary load.

6. Application of the theory to théréompuféfiéﬁrof thin-walled
gstructures applied in ship construction.

7. Computation of shells of the type of an airplane wing (prismatic
and conical having in the cross section one or several closed contours).

8. The computation of bullt-up beams and columms, the elements of
which are thin-walled rods. '

9. The application of the theory of shells to the solution of a
number of problems In the theory of elasticity. The plane problem for
the rectangular region. Reduction to the one-dimensional problem by
subdividing the region into sufficiently narrow rectangular strips
(reference 4).

10. Application of the theory to the problem of the bending of
rectangular plates and gystems formed from them for arblirarily given
boundary conditions (reference 8). In this case on the basis of the
method of the reduction of the plate to a discretely-continuocus system
we obtain also ordinary differential equations.

11. There is given a general method for the computation of beams
bounded by surfaces of the first order (spherical, elliptical, para-
bolic, and so forth). For shells of positive Gaussian curvature the
equations of the momentless theory are reduced to the equationsg of
Cauchy-Riemann. This result first obtained by the author in the papers,
references 9 and 10, permitted computation of shells of the indicated
clasg on the bagis of the theory of functions of a complex variable.

12. It is shown that the equations of momentless shells with
negative Gaugsian curvature bounded by surfaces of the second order
reduce to the equation of the hyperbolic type with constant coefficients.

13. There 1s proven a theorem that the momentlegss shells of
negative Gaugsian curvature are instantaneously varying systems. For
this reason the momentless theory is not applicable to such shells.

Translated by Samuel Reiss
National Advisory Committee
for Aeronautics L i _ L
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